پایان نامه با کلید واژه های تغییر، PCM، سیستم، حرارتی

دانلود پایان نامه

ص صنعتی، قابلیت استفاده به عنوان مواد تغییر فاز دهنده در سیستمهای ذخیره گرمایی نهان را دارند. پارافین ایمن، قابل اطمینان، قابل پیش‌بینی، غیر خورنده و دارای هزینه کمتری می‌باشد. پارافین در دمای کمتر از500 درجه سانتی‌گراد، از نظر شیمیایی خنثی و پایدار است، تغییرات حجم کمی در ذوب و فشار بخار پایینی در حالت ذوب دارد. پارافین‌ها به دلیل خواصی که در بالا گفته شد، معمولاً دارای سیکل انجماد ـ ذوب طولانی هستند. علاوه بر خواص فوق، ذوب متجانس و تشکیل دهنده هسته، دو ویژگی مهم پارافین‌ها می‌باشد. از اشکالات پارافین می‌توان به ضریب رسانش پایین، کمی اشتعال‌پذیر و ناسازگاری با محفظه پلاستیکی اشاره کرد، این اشکالات با کمی تغییر در واکس پارافین و واحد ذخیره برطرف می‌شود. در جدول (1-1) لیستی از پارافین های منتخب با نقطه ذوب و گرمای نهان ارائه شده است. پارافین‌ها از نظر پیشنهاد برای طرحها به سه دسته (I) خوب، (II) متوسط، (III) ضعیف دستهبندی شده‌اند.
جدول 1-1 نقطه ذوب و گرمای نهان پارافین‌ها

1-10-1-2 غیر پارافین‌ها
غیرپارافین‌های آلی شامل تعداد بیشماری مواد با خواص متغیر هستند. برخی محققین، تحقیق وسیعی برروی مواد آلی انجام داده‌اند و سرانجام تعدادی از استرها11، اسیدهای چرب12، الکل13 و گلیکول14 را برای ذخیره انرژی مناسب دانستند. برخی خصوصیات این مواد عبارتند از: گرمای نهان بالا، اشتعال‌پذیر، ضریب رسانش پایین، نقطه اشتعال پایین، مقدار سمی بودن مختلف و ناسازگاری در دماهای بالا. جدول (1-2) برخی از غیرپارافین‌های آلی را ارائه کرده است.

جدول 1-2- نقطه ذوب و گرمای نهان غیر پارافین‌ها

1-10-2 مواد تغییر فاز دهنده غیرآلی
موادمواد غیرآلی به هیدراتهای نمک و فلزات تقسیم بندی می‌شوند. ترکیبات غیرآلی گرمای نهان بالایی در واحد جرم و حجم دارند، از نظر هزینه، ارزان قیمت هستند و در مقایسه با ترکیبات آلی اشتعال ناپذیرند. به هر حال این مواد دارای مشکلات تجزیه و فوق تبرید (که برروی خواص تغییر فاز تأثیر دارند) می‌باشند.
1-10-2-1 هیدراتهای نمک
فرمول عمومی هیدراتهای نمک به صورت می‌باشد. انتقال فاز جامدـ مایع هیدراتهای نمک، در واقع آب زدایی از این ماده است. هیدراتهای نمک گروه بسیار مهمی از مواد تغییر فاز دهنده هستند که دارای خصوصیات زیر می‌باشند: گرمای نهان بالا در واحد حجم، رسانش حرارتی نسبتاً بالا، تغییرات کم حجم در هنگام ذوب، کمی سمی، ذوب متجانس، اختلاف چگالی آب و ماده ترکیبی با آن (که باعث ته‌نشین شدن در انتهای محفظه می‌شود) و تشکیل هسته ضعیف که باعث فوق تبرید می‌شود. جدول (1-3) لیستی از هیدراتهای نمک را ارائه می‌کند.
1-10-2-2 فلزات
این دسته از مواد شامل فلزات با ذوب پایین و فلزات اوتکتیک می‌شود. این فلزات به دلیل مشکل وزن، در تکنولوژی مواد تغییر فاز دهنده چندان جدی گرفته نشده‌اند. گرمای نهان بالا در واحد حجم و رسانش حرارتی بالا از خصوصیات این مواد است. در جدول (1-4) لیستی از این مواد ارائه شده است.
1-10-3 اوتکتیکها
اوتکتیک ترکیبی از دو یا چند عنصر با حداقل ذوب می‌باشد. اوتکتیکها تقریباً همیشه بدون آنکه تجزیه شوند فرآیند ذوب و انجماد را طی می‌کنند. جدول (1-5) لیستی از اوتکتیکها را ارائه می‌کند.

1-11 کپسوله کردن مواد تغییر فاز دهنده
مواد تغییر فاز دهنده به دو روش کپسوله می‌شوند: ماکرو کپسوله15 و میکرو کپسوله16. در روش اول مواد تغییر فاز دهنده در لوله، کیسه، کره، صفحات و یا اجزای ساختمان بسته‌بندی می‌شود. ماکرو کپسوله‌ها دارای معایب، خرابی، نیاز به محافظت، ضریب انتقال حرارت ضعیف در حالت جامد و هزینه بالا می‌باشند. در روش دوم ذرات ریز مواد تغییر فاز دهنده با فیلم پلیمری با وزن مولکولی بالا (که بایستی سازگار با ساختار ماده ومواد تغییر فاز دهنده باشد) مخلوط می‌شود. میکرو کپسوله‌ها معایب ماکرو کپسوله‌ها را تا حد زیادی بر طرف کرده‌اند.
جدول 1-3- نقطه ذوب و گرمای نهان هیدراتهای نمک

جدول 1-4- نقطه ذوب و گرمای نهان فلزات

جدول 1-5- نقطه ذوب و گرمای نهان اوتکتیکها

1-12 سیستم‌های ذخیره انرژی حرارتی
1-12-1 سیستم‌های گرمایش آب خورشیدی
آب در طول روز توسط انرژی خورشیدی به دست آمده از طریق کلکتور گرم می‌شود، گرما از آب به مواد تغییر فاز دهنده منتقل شده و از جامد به مایع تغییر فاز می‌دهد. در ساعاتی که خورشید وجود ندارد، گرمای ذخیره شده در مواد تغییر فاز دهنده به آب منتقل و از مایع به جامد تغییر فاز می‌دهد.
1-13 کاربردهای مواد تغییر فاز دهنده در ساختمان
کاربرد مواد تغییر فاز دهنده در ساختمان دو هدف عمده را دنبال می‌کند:
* استفاده از گرمای طبیعی ( انرژی خورشیدی) به منظور گرمایش در شب زمستانی و سرمایش در شب تابستانی
* استفاده از منابع گرمایی یا سرمایی ساخت بشر
سه راه مختلف برای استفاده از مواد تغییر فاز دهنده برای گرمایش یا سرمایش ساختمان عبارتند از:
* مواد تغییر فاز دهنده در دیوارهای ساختمان
* مواد تغییر فاز دهنده در دیگر اجزای ساختمان
* مواد تغییر فاز دهنده در واحدهای ذخیره سرما و گرما
دو سیستم غیر فعال اول، گرما یا سرما ذخیره شده را وقتی که دمای داخل یا خارج بیشتر یا کمتر از نقطه ذوب می‌شود، به صورت خود به خود آزاد می‌کند. در سیستم سوم که گرما یا سرمای ذخیره شده به صورت کاملا ایزوله از ساخ
تمان نگهداری می‌شوند، سیستمی فعال است. بنابراین در این سیستم فقط از گرما یا سرمای ذخیره شده مورد نیاز استفاده می‌شود (برخلاف دو سیستم قبلی که به شکل خود به خود و اتوماتیک استفاده می‌شد). با توجه به مکان ونوع وسیله مواد تغییر فاز دهنده به کاربرده شده، از مواد تغییر فاز دهنده با نقطه ذوب مطلوب استفاده می‌شود. بازار برای مواد تغییر فاز دهنده تجاری مورد نیاز در محدوده نقطه ذوب 25-5 درجه سانتی‌گراد دچار کمبود است، خصوصاً بین محدوده دمایی 20-15 درجه سانتی گراد که محصولات آنتالپی پایینی دارند. اغلب مواد تغییر فاز دهنده اصلی در محدوده 25-22 درجه سانتیگراد هستند که مورد قبول متخصصان در سیستمهای غیرفعال در ساختمان است.
1-14 کاربرد مواد تغییر فاز دهنده در دیگر زمینه ها
* کاربرد در زمینه مواد غذایی
حفظ دمای غذا در فاصله بین تولید و سرو کردن، از مشکلات عمده تولیدکنندگان مواد غذایی است که کاربرد مواد تغییر فاز دهنده در این زمینه مشکلات عمده حفظ دمای غذا را تا لحظه تحویل حل می‌نماید.
* کاربرد در زمینه پزشکی- دارویی
در روزهای گرم تابستانی، هنگامی که ذخیره خون در بیمارستان به شدت کاهش می‌یابد، خیلی از بیمارستانها نیاز به تهیه خون از بانکهای خون دوردست دارند. در حال حاضر انتقال خونهای مورد نیاز توسط سیستمهای بسیار مجهز و پیچیده‌ای که باعث ایجاد حفظ دمای خون در محدوده خاصی می‌شوند، حمل‌ونقل می‌شوند. قیمت تمام شده این سیستم بسیار بالا می‌باشد و در صورت یخ ‌زدگی یا گرمایش بیش از حد، خون فاسد و غیرقابل استفاده می‌شود. با استفاده از مواد تغییر فاز دهنده با محدود کردن دمای خون در محدوده مجاز، می‌توان با هزینه کم عمل انتقال خون از بانک به بیمارستان را صورت داد.
* خنک‌سازی کامپیوترهای لپ‌تاپ
* خنک‌سازی فضای داخلی کلاه‌کاسکت
* کاربردهای فضایی در خارج جو زمین
1-15 تکنیکهای افزایش کارایی سیستم ذخیرهساز انرژی
بمنظور ارتقای کیفیت یک سیستم ذخیره انرژی، تکنیکهای متنوع و گوناگونی مورد استفاده قرار میگیرد. این تکنیکها عبارتند از:
* استفاده از سطوح گسترش یافته (نصب فین)
* استفاده از شبکهای از PCMها (چند PCM)
* افزایش هدایت حرارتی PCM
* میکروکپسوله کردن PCM
1-15-1 استفاده از سطوح گسترش یافته
فینها، سطوح گسترش تافتهای هستند که برای مهیا کردن سطح اضافه برای تبادل حرارت در سیستمهای حرارتی مورد استفاده قرار میگیرند. پیش از آنکه به بحث پیرامون اثر استفاده از فین در سیستمهای ذخیره کننده انرژی بپردازیم، لازم است این نکته یادآوری شود که اساساً دو نوع سیستم ذخیرهساز از این منظر مطرح میباشد. در یک نوع از سیستمها، تبادل انرژی میان محفظه حاوی PCM و یک سیال انتقال دهنده انرژی که به اختصار HTF نامیده میشود، صورت میگیرد مانند سیستمهای ذخیره ساز انرژی خورشیدی. اما نوع دیگر مربوط به سیستمهای فاقد سیال تبادل کننده انرژی بوده و در واقع منبع انرژی شرایط مرزی خاص در دیواره محفظه میباشد (دیوار دما ثابت یا شار ثابت)، مانند محفظه سرمایش سیستمهای الکتریکی. طبیعتاً در سیستمهای نوع دوم (فاقد HTF)، فین در سمت PCM نصب میگردد ولی برای سیستمهای نوع اول (حاوی PCM)، محل نصب فین عموماً به ضریب انتقال حرارت وابسته است. در اکثر سیستمها، سمت حاوی PCM دارای ضریب انتقال حرارت کمتر از سمت HTF بوده و بهمین دلیل عموماً فینها در سمت PCM نصب میگردد.
1-15-2 استفاده از شبکهای از PCMها در سیستم
بکارگیری تعدادی PCM با خصوصیات نزدیک بهم در سیستمهای ذخیرهساز انرژی بعنوان تکنیک جالب توجهی برای ارتقای این سیستمها مطرح میباشد. اساس این تکنیک استفاده از چند PCM با دمای تغییر فاز متفاوت بطور همزمان و بصورت مجزا از هم در سیستم میباشد. همانطور که میدانیم، نرخ انتقال حرارت در سیستم و در نتیجه کارایی سیستم قویاً وابسته به اختلاف دمای سیال انتقال دهنده حرارت (HTF) و نقطه ذوب PCM میباشد. از آنجایی که این اختلاف دما در جهت جریان کاهش مییابد، در سیستمهای حاوی یک PCM، نرخ انتقال حرارت و راندمان سیستم با کاهش روبهروست. حال اگر از چند PCM و با ترتیب خاص در سیستم استفاده شود، این آرایش PCMها میتواند منجر به اختلاف دمایی تقریباً ثابت در جهت جریان گردد (هر چند دمای HTF در جهت جریان تغییر میکند)، که این خود منجر به انتقال حرارتی تقریباً ثابت PCM میگردد. همچنین انتقال حرارت ثابت از PCM به HTF نیز در این آرایش امکانپذیر میباشد. (شکل1-3) چیدمان اساساً بنحوی اعمال میگردد که اختلاف دمای HTF و PCM در جهت جریان تقریباً ثابت بماند، لذا در حین مرحله شارژ، همانگونه که در شکل نشان داده شده است، چیدمان PCMها در جهت کاهشی برای نقطه ذوب PCMهاست. که طبیعتاً در مرحله دشارژ جهت عکس بمنظور بهرهمند شدن از این ویژگی سیستم باید انتخاب گردد.

مطلب مشابه :  استفاده از تلفن همراه، تلفن همراه

شکل1-3- سیستمهای حاوی چند PCM
1-15-3 افزایش هدایت حرارتی PCM
اگرچه PCMهای مرسوم معمولاً دارای دانسیته بالایی هستند، اما نرخ پایین ذوب و انجماد، پتانسیل سیستمهای ذخیرهساز انرژی را در کاربردهای خاص کاهش میدهد. علت این امر آنست که تقریباً همه PCMهای مرسوم و متداول دارای هدایت حرارتی پایین میباشند. اساساً هدایت حرارتی PCMها میتواند با بکارگیری مواد با ضریب هدایت بالا، افزایش یابد. این افزایش ضریب هدایت حرارتی با افزودن مواد با هدایت بالا به روشهای مختلفی میتواند صورت پذیرد. این روشها عبارتند از:
* اشباع سازی مواد متخلخل با هدایت حرارتی بالا در PCM
*
پخش نمودن ذرات با هدایت حرارتی بالا در PCM
* جاسازی ترکیبات و ساختارهای فلزی در PCM
* استفاده از مواد با ضریب هدایت بالا و دانسیته پایین
استفاده از کامپوزیت گرافیتی در PCM اگرچه منجر به افزایش کارایی سیستم میشود ولی به نوبه خود دارای محدودیتهایی است که پژوهشگران را بر آن داشت که بدنبال راه حلهای دیگری نیز باشد. این محدودیتها مربوط به پروسه تولید این کامپوزیتهای گرافیتی است که زمانبر و نیز هزینهبر میباشد. از اینرو بعضی از محققین در چند سال اخیر به دنبال راه حلی برای این مشکل بودهاند. آنها دریافتند که با افزودن ذرات با هدایت حرارتی بالا در مقیاس میکرو و نانو در PCM، خواص ترمودینامیکی PCM ارتقا یافته و منجر به افزایش راندمان سیستم میشود. که در این پژوهش به بررسی این اثر پرداخته شده است. جاسازی ساختار فلزی در محفظه PCM بعنوان تکنیکی برای افزایش هدایت حرارتی ماده تغییر فاز دهنده مطرح میباشد. در این تکنیک از یک کره فلزی و یا لوله استوانهای (و یا سایر اشکال) استفاده شده و با قرار دادن آن در محفظه PCM مشاهده میگردد که زمان تغییر فاز به طرز چشمگیری کاهش مییابد و در نتیجه بازده سیستم افزایش قابل توجهی خواهد یافت (شکل1-4). ذرات و ترکیبات فلزی بعات دانسیته بالا ممکن است به پایین سیستم تهنشین شده و نیز موجب افزایش قابل توجه وزن سیستم میشود. علاوه بر آن، تحقیقات محققین نشان داده است که همه فلزات با کلیه PCMها سازگار نیستند. بعنوان مثال، ذرات آلومینیوم با پارافین سازگار بوده، در حالی که نیکل با پارافین سازگاری ندارد. همین مسائل موجب گردید که محققان بدنبال موادی با دانسیته پایین و هدایت حرارتی بالا باشند که با همه PCMها سازگار باشد.
از آنجایی که دانسیته فیبرهای کربنی از فلزات کمتر بوده و هدایت حرارتی آن تقریباً معادل هدایت حرارتی مس و آلومینیوم است، استفاده از آن بعنوان راهحلی جالب توجه برای افزایش کارایی سیستم ذخیرهکننده انرژی پیشنهاد میگردد. علاوه بر آن فیبرهای کربنی دارای مقاومت به خوردگی بوده و در نتیجه قابلیت سازگاری با اکثر PCMها را دارا میباشد. نکته حائز اهمبت در استفاده از فیبرهای کربنی در سیستم، توزیع یکنواخت ذرات فیبر کربن میباشد. مطالعات نشان میدهد سیستمهایی که در آن ذرات فیبر کربن بصورت یکنواخت در PCM توزیع شده، کارایی به مراتب بیشتری نسبت به حالتی که توزیع، تصادفی و غیریکنواخت باشد از خود نشان میدهد.

مطلب مشابه :  پایان نامه ارشد دربارهFDTD، سازی، عددی، ................................

شکل1-4- ساختارهای فلزی مورد استفاده در سیستم ذخیرهسازی انرژی
1-15-4 میکروکپسوله کردن PCM
یکی از راهها برای افزایش نرخ انتقال حرارت بین PCMو چشمه یا چاه حرارتی، استفاده از PCMهای کپسوله شده میباشد. همانگونه که از اسم این مواد پیداست، PCMهای میکروکپسوله در واقع PCMهایی هستند که به حالت مایع یا جامد ودر ابعاد میکرو توسط پوسته و غشای نازکی محصور گشته است. این پوستهها میتواند از جنس بسیاری از مواد از جمله پلیمرهای طبیعی و مصنوعی باشد. میکروکپسوله کردن PCMها میتواند از دو طریق شیمیایی مانند روش تودهای، و فیزیکی مانند روش اسپری خشک انجام پذیرد. (شکل1-5) میکروکپسولههای بدست آمده از روشهای حرارتی کارایی و عملکرد بهتری نسبت به PCMهای رایج از خود نشان میدهند. علت این امر آنست که ذرات کوچک PCM در این حالت سطح انتقال حرارت بیشتری در واحد حجم و در نتیجه نرخ انتقال حرارت بیشتری دارند. علاوه بر این، PCMهای میکروکپسوله شده خواص ممتاز دیگری را نیز دارا میباشند که آن، واکنشپذیری بسیار

Leave a Comment